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ABSTRACT

The transmission and radiation of sound from submerged

plates are investigated by means of a quantitative

schlieren method which produces accurate visual representa-

tions of sound fields. The method is shown to have signi-

ficant advantages over the usual time-consuming, point-by-

point scans of acoustic fields. Previous investigations

have shown the feasibility of quantizing schlieren data,

and this investigation demonstrates a dramatic improvement

in the accuracy of that data, reducing the standard error

to under one decibel which places the accuracy of the

method on equal footing with other acoustic measurement

systems. The further addition of stroboscopic techniques

enabled the resolution of individual acoustic waves and

permitted the differentiation between standing waves and

progressive waves. The low frequency resolution of the

classical schlieren system was also improved by nearly two

orders of magnitude; sound waves as low as 27 kHz were

easily visualized. These improvements in the quantitative

schlieren system are demonstrated by a thorough study of

transmission of sound through submerged metal plates over a

frequency range extending from below to over one hundred

times the classical coincidence frequency. Recent theoret-

ical descriptions of the lowest order symmetrical Lamb wave

are confirmed, and cancellation of modal pairs of Lamb

waves with increasing frequency is observed.
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CHAPTER 1

BACKGROUND

1.1 Introduction

The interaction of sound with physical structures is a

topic of major concern in acoustics. Specific items of

interest are the diffraction of sound around edges and

through apertures, the transmission and reradiation of

sound by jointed and welded panels, and the radiation of

sound from plates and shells. Such phenomena are very

complex because of the generation of free and forced Lamb

and Rayleigh waves and their subsequent radiation into the

surrounding medium. A basic understanding of these

phenomena is necessary in order to more accurately predict

the acoustic qualities of auditoriums, the noise levels

transmitted between living areas, or the noise radiated by

machinery in the work environment.

In previous work, the evaluation of such intricate

sound fields had to be based on much guesswork. In this

thesis, a stroboscopic illumination of the sound field by

periodically interrupting a laser beam has made it possible

to differentiate between standing and progressive waves,
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and to measure their wave lengths with great accuracy.

Interpretation and analysis of the various phenomena that

appeared through use of this schlieren method was thus

possible.

In addition to demonstrating the power of the strobo-

scopic schlieren technique in the analysis of several

interesting, complex acoustic fields, much of the effort of

this dissertation was concentrated on the investigation of

the sound transmission of simple plates and the various

types of waves, longitudinal waves, forced vibrations,

transient waves, etc., that are associated with this

transmission. The mathematical treatment of sound radia-

tion by a vibrating plate and sound reflection from a plate

is quite similar and the results readily applicable to

either case. Although the literature in the last few years

reflects considerable interest in theoretical treatments of

the problem, very little experimental effort has been

expended. This investigation is intended to fill part of

that gap.

The experimental approach is based on the schlieren

technique. This method has in the past been limited to

acoustic frequencies near 1 MHz and above. Since this

range is far above frequencies of normal, practical engi-

neering interest, an attempt was made to construct a

schlieren system which would be capable of imaging sound

fields of considerably lower frequencies. The result was

an instrument which was capable of producing clear, sharp



images of acoustic waves at frequencies as low as 27 kHz,

or nearly two orders of magnitude below the frequency range

commonly used. Futhermore, it was found that, by combining

stroboscopic techniques with the schlieren method, numerous

additional measurements could be obtained on progressive

fields which were previously impossible.

A major obstacle to the use of a schlieren system in

such an investigation was the previous unreliability of

quantitative data obtained with the method. One of the

most striking achievements of this project was the demons-

tration of the extreme accuracy and repeatability of the

resulting data. In most cases, tolerances as close as 1 dB

were easily maintained. This, combined with the other

obvious advantages of the schlieren method, e.g., a full

two-dimensional representation of a sound field with no

inherent disturbance of the field by the measurement

process as opposed to the usual point-by-point probing

techniques should offer great encouragement for its future

use.

1.2 Objectives

The standard schlieren method reproduces sound inten-

sity as white and dark shades in the schlieren photographs,

but does not give any information about the type of waves

that give rise to the sound field. An exact analysis of

these various waves has been one of the great difficulties

with previous schlieren investigations; thus, the major
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task of this research was the development of stroboscopic

and highly accurate procedures for analyzing complex sound

fields. The second basic objective of this research was to

obtain experimental confirmation of recent theoretical

treatments of the acoustic radiation and transmission

through submerged plates. Furthermore, it was intended

that previous experimental confirmations of the dispersion

relations would be extended to much higher frequency

parameters. Analysis of the latter produced some surpris-

ing results regarding the appearance of the cancellation of

modal pairs. Since the theoretical predictions apply to

ideal, infinite plates, a secondary objective was to obtain

experimental results showing the perturbations caused by

nonidealized plates, e.g., the effects of the plate edges

and of discontinuities such as ribs and weld joints. A

prerequisite to this was the improvment of accuracy and

low-frequency resolution of the quantitative schlieren

method as well as the addition and perfection of the

stroboscopic techniques necessary for the analysis of

progressive-wave fields.

1.3 Sound Interaction with Plates

1.3.1 Transmission at Oblique Angles

The plates to be discussed herein will be treated as

isotropic elastic material bounded by two infinite parallel

planes and submerged in an infinite fluid medium. The
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original theoretical treatment of such infinite plates was

by Rayleigh [1] and Lamb [2, 3], the general results of

which are now referred to as the "classical plate" theory.

The latter paper [3] discussed the infinite set of propaga-

tion modes which are possible for waves traveling in the

plate at high frequencies. These modes are usually refer-

red to as either "free plate waves" or "Lamb waves".

Earlier, Rayleigh [1] had predicted the existence of

"Rayleigh waves" at the surface of a semi-infinite solid

which, in the context of the present investigation, can be

thought of as an infinitely thick plate.

With the exception of Knott's study 4 in 1899 on the

reflection of elastic waves, little was done concerning

sound interaction with plates until 1934, at which time

three groups began reporting on various series of relevant

investigations. One group headed by Lindsay [5, 6, 7]

first developed a theoretical description of sound trans-

mission through stratified layers of solids and fluids.

Then, Smyth and Lindsay [8] tested the theory by means of

an experimental investigation of sound transmission through

arrays of multiple plates using a torsional disk to measure

the amplitude of the transmitted sound. A second group,

headed by Schaefer and Bergmann [9, 10, 11], developed a

method of measuring the velocities of the longitudinal and

shear waves in transparent solids by means of a light

diffraction technique. They also attempted to extend the

method to opaque materials by reflecting the light beam off
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the surface of the solid 110). The third group, headed jy

Walti [12, 13], developed a method of measuring elastic

constants by determining the sound velocities in the solids

from the character of the transmission data. They used

thin wedges of material and found the dispersion curve by

using the diffraction pattern produced by a beam of light

passing through the transmitted sound field.

A landmark experiment by Sanders [141 in 1939 also

used an optical method to find the angular locations of the

peaks in the transmission curves (from which the sound

velocities can be determined) for brass and nickel at

frequencies up to about six times the classical coincidence

frequencies of the plates. In the mid-nineteen forties,

Osborne and Hart [15, 16] showed the existence of a precur-

sor in the received signal caused by the higher sound

velocity in the plate; detonator caps were used to produce

a sharp acoustic pulse which was then reflected off a

large, submerged steel plate. At the same time, Reissner

[17, 18] was making substantial improvements in the theory

of plates with his attempts to include the effects of shear

deformations in the classical derivation.

With the development of electronic computers, Fire-

stone [19] was, in 1948, able to solve the transcendental

equations which describe the dependency of the phase

velocities of the various Lamb waves on frequency, i.e.,

the dispersion curves. The comparison with experimental

data was good up to frequencies of the order of fifty times
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the classical coincidence frequency of the plate, which

included the first eight to nine Lamb modes. The same

year, Fay [20] predicted and his associate, Finney (21],

measured backscatter (i.e., acoustic energy radiated back

towards the sound source along the angle of incidence) from

submerged steel plates for frequencies up to thirteen times

the coincidence frequency of the plate. This same labora-

tory then took the next step beyond simply attempting to

determine the angular locations of the peaks in the trans-

mission curve and produced [221 some of the first, and

still most detailed, experimental curves of sound transmis-

sion vs angle of incidence for steel plates in water.

Curves were presented for very closely spaced frequency

intervals covering the range from 2.7 to 50 times the

classical coincidence frequency. At about the same time,

another group, Schneider and Burton [23], produced several

plots of transmission vs angle for aluminum plates in water

scattered rather sparsely in the frequency range from

eighteen to seventy-one times the coincidence frequency;

this served as a validation of a method they then used to

determine the elastic constants of several resins. They

also succeeded in obtaining schlieren photographs of sound

transmission through aluminum plates at thirty-five times

the coincidence frequency [241 but were unable to obtain

any quantitative data with the latter method and thus did

little more than provide a sequence of photographs and a

confirmation of the angular locations of the radiation from

a couple of the Lamb waves.
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In 1950, Schoch [25] brought together all of the

previous work on sound interaction with plates in a super-

bly detailed tutorial paper. Immediately thereafter,

Mindlin (261 developed the theoretical description of plate

motion now named after him by successfully including the

effects of rotary inertia and shear in the description of

the flexural motion of plates. He and his co-workers (Kane

and Mindlin [27], and Mindlin and Medick [28]) then

extended the theoretical description to include extensional

vibrations. The various parts were brought together by

Mindlin (29] in 1960.

Experimental work began tapering off during this time

period. However, in 1952, Makinson [301 presented several

very detailed dispersion curves using the method developed

by B~r and Walti (121, but made no attempt to solve the

transcendental equations needed for a theoretical compari-

son as Firestone [19] had done for the case of aluminum

plates. In the late 1950's, Liamshev and Rudakov [31, 32]

were able to obtain several angular plots for the sound

reflected from or radiated by various types of submerged

metal plates. This was accomplished by means of a quartz

transducer and barium titanate vibrators. Worlton (331

calculated the dispersion curves for the first eighteen to

twenty Lamb modes in aluminum and in zirconium. He then

was able to experimentally determine several scattered

points which indicated reasonably good confirmation of

these curves for aluminum. There apparently have been very
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few attempts during the last twenty years to experimentally

confirm the dispersion curves in other substances or to

report detailed plots of transmission ratios at oblique

angles.

The theoretical efforts have not slackened; in fact,

they seem to have gained momentum in the last few years.

In 1959, Tamm and Weis [34] gained some interesting insight

into the behavior of the dispersion curves at very high

frequencies by calculating a set of curves for an extremely

high Poisson's ratio of 0.49 (the theoretical maximum is

0.50). In 1966, Feit [35, 36] was able to calculate the

far-field radiation pattern of a vibrating plate based on

the Mindlin plate equations. Then, in 1975, Stepanishen

[371 investigated the effects of shear and rotary inertia

on, specifically, the transmission of sound through plates

(also note the resulting comments by Young (381 and Stepan-

ishen's subsequent reply (39]). Stuart [40, 41] then

analyzed the effects of fluid loading on the radiated field

by using a technique based on leaky wave poles. One result

of this work is the possible indication of additional real

roots in limited cases dependent on the occurrence of

certain combinations of parameters. The corresponding

physical explanation for this possibility has given rise in

this past year to several other papers with Crighton (42]

and particularly, Strawderman et al. (43], insisting that

the additional real roots have no physical basis, but with

Pierucci and Graham [44] offering support for their
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existence. Most recently, the Mindlin plate theory has

been applied to the problem of composite plates by Rudgers

[45], and to the problem of acoustic backscattering from

plates by Rumerman [46).

The following treatises should be consulted for more

detailed summaries of the previous work on the radiation

and reflection of sound waves from plates: Ewing et al.

[47], Brekhovskikh (48], Viktorov [49], Junger and Feit

[50], and Graff [51].

1.3.2 Effects of Bounded Beams

Gbtz (52] was able to obtain, in 1943, several trans-

mission curves as a function of angle by scanning the

transmitted acoustic field with a hydrophone. Furthermore,

when scanning near to, and parallel to, the back surface of

the plate, he found a pronounced lateral shift in the

location of the transmitted beam when the angle of inci-

dence was near one of the critical angles of the Lamb

modes. Schoch [53] succeeded in explaining the phenomenon

so convincingly that it was not until twenty years later

that Neubauer [54] was able to obtain experimental data of

sufficient range and accuracy to turn up discrepancies in

Schoch's theory. Neubauer's work prompted Bertoni and

Tamir (551 to improve on Schoch's treatment by basing the

predictions of the magnitude of the beam displacement on

the intensity across the width of the beam as well as its

trequency. Additional experimental evidence was obtained
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by Plona [56, 57) and some additional theoretical work was

done by Pitts (58, 59, 60] while both were at Georgetown

University.

First, Tolstoy and Usdin [61] in 1957 and then Vikto-

roy (49] in 1967 discussed the possibility of the phase

velocity and the group velocity having opposite signs

within certain very narrow frequency ranges. The lowest

frequency at which this might occur is at the onset of the

second symmetrical plate mode, i.e., the Si Lamb wave. The

first hint of an experimental confirmation of this rather

surprising prediction was presented by Negishi [62] in a

paper presented at a recent joint meeting of the Acoustical

Society of America and the Acoustical Society of Japan.



CHAPTER 2

THEORETICAL FOUNDATIONS

2.1 Scale Models

The building and testing of scale models before the

construction of a full-size prototype is a common practice

in many branches of engineering. In fact, in such cases as

the testing of aircraft designs in wind tunnels or the

testing of harbor and estuary scale models are used

universally. The principal motivation for such model

studies is the economics involved in investigating the

effects of changes in various parameters in the design of

the full-size prototypes for structures which are too

complex to be treated analytically. The relationships used

to predict the behavior of the prototype from the results

of the model studies are based on the principles of dimen-

sional analysis. These were first drawn together in 1915

by Lord Rayleigh (63], although some of the main concepts

had been used previous to that time by Rayleigh and others.

Dimensional analysis is used with such frequency as to

be nearly second nature to most engineers and physicists.

Consequently, the degree of physical intuition needed to

=° 1.
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properly choose the various physical parameters which need

to be included in the dimensional equation or which need to

be scaled and those which can simply be ignored, is gener-

ally overlooked. Bridgman [64], for example, discusses the

problem of deducing the time of oscillation of a small drop

of liquid. After arguing for the inclusion or exclusion of

various parameters such as surface tension, density,

radius, viscosity, etc., he concludes that: "The untutored

savage in the bushes would probably not be able to apply

the methods of dimensional analysis to this problem and

obtain results which would satisfy us." This reliance on

physical intuition can complicate the defense of one's

final choice of parameters to be included in the scaling

equations.

The common practice with acoustical scale modeling in

general and in schlieren systems specifically is to scale

each of the three linear dimensions down by the same

factor, build the model of the same material as the full-

size prototype, and submerge it in the same acoustic

medium. This implies that such crucial parameters as sound

velocity, density, elastic moduli, etc., will not be scaled

down in parallel with the geometric size. The problem is

then to either defend this technique or to find exactly

what effect this distortion will have on the results of the

model investigation.

Beginning with a simple point mass compliance system

the equation of motion is
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MZ + R + /K - F, (1)

where M is the mass, R the resistance, K the compli-

ance, F the driving force, and the displacement. This

can also be written as

+ 2 6 + W 2 = F/M, (2)

0

where

6 R/2M is the damping (3)

and

Wo I/ /MK the natural frequency. (4)

If the system is scaled by changing the geometrical dimen-

sions by a factor a, i.e., L - aL, then each term in the

equation of motion must scale in a similar manner if the

equation is to hold for all sizes of models. The steady-

state response of the system can be found with no loss of

generality by assuming a forcing function of the form

F f exp(jwt). (5)

Equation (2) reduces to

[1 - 2J6 /w - wo2/W 2  f/(- 2M). (6)

This implies that the damping and the frequency parameters

must scale in a similar manner

SIw 3 / W (7)
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and that the right-hand side must scale as a length, i.e.,

f/W2M af/W 2M. (8)

Furthermore, if the phase relations are to be preserved,

then Equation (5) implies that

Wt W t (9)

must be invariant under a change in scale.

The above treatment assumed that the linear strain,

i.e., the change in displacement per unit length, is

invariant under a change in scale. It follows from this

same assumption that if the model is constructed of the

same material as the full-size prototype, then by Hooke's

Law, the stresses will also be invariant. Thus, the forces

must scale as lengths squared:

F - a2F. (10)

Furthermore, if the model is indeed to be constructed of

the same material, then the mass must scale as a length

cubed,

M - a 3M, (11)

since, obviously, the volume scales as a length cubed.

Combining relations (10) and (II) yields

F/M * F/aM (12)
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which, when compared with Equation (2), shows that

acceleration scales as the inverse of a length, i.e.,

* (13)

and also that

W0 - wI "a. (14)

Comparing the latter relations with Equation (9) yields

t at. (15)

Consequently, the effect of scaling on any parameter

can be found from only three of these relations: the

mechanical dimensions of length, mass, and time. Summariz-

ing these from above, one sees that if

L aL,

then T + aT (16)

and M a3 M.

These relationships now need be applied only to the dimen-

sional equation of the parameter of interest. The more

commonly needed parameters in acoustics are summarized in

Table 1.
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TABLE 1

Summary of Scaling Relations

IPrototype H odelI

acels ri to ........... :6 GB

denery....................... E P a P

forplcement.....................F a F

frequency. .... o. . . . . ....... W w/a

Iimpedance, characteristic ..... PC IPCI

Iintensitye............... I I

Imass.................*........~ M a M

IPoisson's Ratio ............. V V

Ipowe r............. eo W Ia W

Ipressure.......oso-o p Ip
2

Iresistance, radiationo.......R a aRI

I torque.o .......... o...... t C

I wave number ......... .. . k I k/aI
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2.2 Collimated Acoustic Beams

The common theoretical treatments of sound interaction

with plates presumes the use of an acoustic plane wave.

Obviously, infinite plane waves do not exist in the labora-

tory. The most congenial experimental situation which one

can hope to obtain would be with the use of a collimated

acoustic beam. In general, however, acoustic beams are not

well collimated; they spread as they travel down range with

a characteristic angle known as the beam width. This angle

is dependent on the ratio of the lateral dimensions of the

transducer to the acoustic wavelength and can be made

"arbitrarily" small by increasing the diameter of the

transducer. Unfortunately, when one is working in a small

test tank, one cannot arbitrarily increase the size of the

transducer without quickly reaching the point of diminish-

ing returns.

Figure 1 shows the criteria which need to be met. The

figure is a full-scale schematic representing a typical

schlieren photograph depicting an acoustic beam reflected

from the surface of a plate. The cross section of the

optical beam is five inches in diameter, and the acoustic

beam, which enters from the upper right, is depicted as

having a width of 2.5 inches. In order to determine the

reflection coefficient of the plate, one must, of course,

be able to resolve the incident and reflected beams. As

can be seen, this would become impossible if the diameter
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ACOUSTIC BEAMOPIA

CROSS-SECTION

FIGURE 1. Acoustic beam reflection from a plate.
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of the acoustic beam was much greater than that shown in

this figure. The second point which needs to be made is

that, if the beam is spreading, then the on-axis intensity

of the reflected beam cannot be directly compared to the

on-axis intensity of the incident beam. The net result of

these observations is that one ideally would like to have

an acoustic beam which is no larger across than about half

the diameter of the optical beam and collimated over a

range of no less than four times its own diameter. In the

instant case, this requires an acoustic beam 2.5 inches in

diameter and 10 inches long.

The fact that one of the major goals of this research

is to demonstrate the feasibility of using the schlieren

technique at frequencies an order of magnitude lower than

frequencies traditionally used with schlieren systems

somewhat complicates the task. In order to achieve the

same angular beam width at a frequency ten times lower one

must construct a transducer with a diameter ten times

larger. An examination of the near field of a vibrating

piston, as shown in Figure 2, indicates that the problem

can be resolved. The figure is a typical textbook illus-

tration [65] showing the near field and the transition to

the far-field pattern of the piston. At the face of the

piston, the extreme near field is greatly complicated by

the occurrence of a series of peaks and nulls within the

cylindrical beam. However, in the remaining portion of the

near field between the iast on-axis peak in the extreme
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FIGURE 2. The near field of a piston vibrator.
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near field and the transition zone to the far-field region,

the beam is relatively well-collimated and well-behaved.

The transition zone between the near and far fields

occurs at the intersection of the cylinder whose diameter

is given by the diameter of the piston and a cone of

half-angle 0 emanating from the center of the piston face

(65]. One can thus see the trade-off involved: if the

diameter of the piston is made smaller (and thus the

diameter of the cylindrical beam), 9 will increase and the

transition zone will occur closer to the piston. Conse-

quently, the useful range of the transducer is reduced.

The minimum beam diameter, d , can be defined as the cord

which subtends the angle 29 at a range, R:

d /2 = R tan9. (17)

If the angular beam width is assumed to be measured between

the 3 dB down points (several other criteria are also in

common use), then the usual expression employed for the

beam half-angle is:

0 - 300 /d. (18)

Substituting this relation into Equation (17) together with

the fact that here the minimum range which can be tolerated

appears to be about 12 inches, one obtains the following

transcendental equation:

dm  - 24 tan(31416/fd M) (in.) (19)

m m
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The left- and right-hand members are graphed in Figure 3,

and the resulting solution for d is shown in Figure 4. It3

can be readily seen from Figure 4 that, although there are

no problems when working in the frequency range generally

used with schlieren systems, i.e., about 1 MHz and above,

the criteria deduced from Figure 1 cannot be achieved for

frequencies below about 150 kHz. As will be seen in

Chapter 4, this is the most serious limitation on the low

frequency capabilities of the schlieren system in the form

in which it was implemented.

2.3 Plate Theory

2.3.1 Dispersion Relations

The problem to be treated consists basically of an

infinite plane acoustic wave incident at an oblique angle

onto an infinite elastic plate submerged in a fluid. It

will be assumed that the plate is homogeneous, isotropic,

and bounded by parallel planes. At an arbitrary angle, the

acoustic energy will, in general, be partially reflected

and partially transmitted. The percentage which is trans-

mitted can be determined experimentally with relative ease

using the methods described in Chapter 3; hence, that

quantity (as a function of angle of incidence and of

frequency) will be used in the theoretical comparisons.

Figure 5 shows the geometry of the problem under

consideration. For a plate of sufficient thickness (i.e.,
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FIGURE 3. A graphical solution of Equation (19).
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several wavelengths) several different modes of vibration

can be sustained. Each of these modes has a characteristic

phase velocity for a given frequency. Hence, as the angle

of incidence is increased from normal incidence, 00, to

grazing incidence, 900, the projection of these phase

velocities will, at specific angles, coincide with the

velocity vector of the incident wave. At these coincidence

angles the transmission ratio (transmitted intensity

relative to incident intensity) will show a sharp rise

approaching a value of unity, i.e., total transmission, or

equivalently, zero reflection. The dispersion relations or

formulae relating the phase velocities to the frequency

which describe these plate modes were first derived by

Rayleigh [1] and Lamb [31 for a plate in vacuo.

By assuming that both the incident plane wave and the

plate are infinite in extent, the problem reduces to one of

only two dimensions. The equations of motion for the plate

then (omitting a constant time factor exp[-jwt]) reduce to:

22 02 (20)_7 + - + k O, (20)

;x2  ay 2  1

22a-- 2 + k 2 0, (21)
3x 2 y2

where the wave numbers kI and k are for longitudinal and

the transverse waves, respectively. They are given by

2 2

k1 2 p /(X + 21j) (22)

k t2 W2 , (23)
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where X and are the Lam4 constants, pp is the density of

the plate, and w is the circular frequency. The particle

velocity can be found from the longitudinal and shear wave

potentials 0 and t, respectively, by means of the relation-

ship

v = V0+ 7X P. (24)

At the boundaries of the plate, i.e., at x = + h/2, the

stresses must be zero. These boundary conditions can be

substituted into equations (20) and (21) together with the

following representations for the solution:

ch{(k2 - kl21/2 jky

+ B sh((k 2 
- k1  x)/2x} eJky (25)

and

sh{(k2 - k 121/2 jky

+ D ch{(k 2 - kt 2 )1/2x} ejky, (26)

where A, B, C, and D are arbitrary constants, and sh and ch

represent the hyperbolic sine and cosine functions, respec-

tively. Some minor algebraic manipulations yield the

eigenvalue equation

tanh{(k 2 k t2)/ 2h/21 4k2(k 1 /2 (k ±

2_2 1/2h 2 2 2 2
tanh{(k 2 -k ) h/2 (2k2 -k 2 (27)
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where the solution arising from the longitudinal mode is

given by the minus sign in the exponent and that arising

from the transverse mode is given by the plus sign.

Solutions of this transcendental equation were very

difficult to obtain until the advent of electronic compu-

ters. It was thus not until 1948 that Firestone [191 was

able to obtain a sufficiently c~mplete numerical solution

which he then was able to compare with experimental

results. His data on the location of the transmission

peaks for an aluminum plate submerged in xylene offered

confirmation for the first ten modes and for frequencies up

to approximately fifty times the classical coincidence

frequency of the plate.

2.3.2 Transmission Through a Mindlin Plate

The angular location of the peaks in the transmission

curve is, however, only part of the description. Also of

considerable interest is the magnitude and width of the

peaks, as well as, for that matter, the behavior between

the peaks. The classical derivations of the relevant

equations omit the effects of shear and rotary inertia.

Consequently, the equations are valid only for thin plates

(i.e., thin compared with the wavelength). The range of

validity is thus limited to frequencies near or below the

classical coincidence frequency. At these frequencies, the

higher Lamb modes cannot be excited and the phenomenon of

multiple peaks in the transmission curves discussed above
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does not occur. In order to extend the range of validity

to higher frequencies, it is necessary to include the

effects of shear and rotary inertia as was done by Mindlin

[26]. The equations needed for direct comparison with

experiment can be found most quickly by following the work

of Stuart (40, 41].

Assuming an exp(-jwt) time dependence, the Mindlin

plate equation reduces to:

2 + ~ 2  2 2 2{(V + mSW2/D][7 + mI /D] - mw /D} u(x)

I/D [I - SV 2  _ mSIW2/D] q(x), (28)

where m = Pp h, the density per unit area of the plate,

Pp = plate density,

h - plate thickness,

D = E h 3 /12(1 -v 2),

E - Young's Modulus,

V - Poisson's Ratio,

S - h 2 /6X 2 (C -v),

2 . Mindlin's shear correction factor

(- 0.76 + 0.3v),

I h 2  /12,

u(x) the transverse displacement

and q(x) - the distributed load.

Note that if the shear, S, and the rotary inertia, I, are

set equal to zero, this equation reduces to the classical

plate equation.
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Taking the Fourier transform in space and expressing

the result in a nondimensional form yields

MW 2 (K 2 K2)(K2 - KS ) - 1] U(K) -

- [1 + S2K 2(K - K1 )] Q(K), (29)

where the following normalizations have been used:

2
- 112 c2/h c, the classical coincidence

cP frequency,

K K/k = sin 0,

KS = Cs/k =c/cs,

. Z 2 /72c 2(I-T )12
cs G/p p ( )2

G - the shear modulus,

KI . K I/k f c/c

c _ VE I( - 2 )0P P

and c = sound velocity in the surrounding medium.

The velocities cs  and cp are those of the shear wave and

of the dilitational wave in the plate, respectively. The

parameters U and Q are the transforms of the displacement,

u, and of the loading, q, respectively, and are given by:

U fu(x) e jKX dx, (30)

and

Q -_q(x) ejx dx. (31)

The impedance of the plate can now be found from the

ratio of the transformed net force, Q, to the transformed

velocity, -JwU, as obtained from Equation (29), i.e.,
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jj1 S[ 2 (K 2 - KS2 )(K 2 - K1
2 ) - 1]ZpC -- 2K 2 2

p 1 + KS 2 n2 (K - K1 )] (32)

The acoustic impedance at the surface of the plate is

found in a similar manner. Thus,

Z /Pc - J/(K- 1)1/2 . 1/cos 0. (33)

The acoustic transfer function given by

T - 2 Za/(2 Za + Z ) (34)

can now be evaluated by means of Equations (32) and (33)

and used to predict the transmission ratio of a plate

submerged in a fluid as a function of the angle of

incidence, 9, and the frequency, w, of the incident beam.

2.3.3 The Longitudinal Plate Wave:

An Augmented Mindlin Equation

The equations derived in the previous section, which

were based on the Mindlin plate theory, do not describe the

full phenomenon. In fact, as Stuart [401 states, they

represent only the effect of the first, and partially of

the second, antisymmetrical mode of the plate. Because

both of these modes occur only for those frequencies above

the classical coincidence frequency, the most serious

omission is that of the first symmetrical mode, i.e., the

first longitudinal mode, of the plate. This mode can

produce a peak in the transmission curve even at



33

frequencies below the coincidence frequency. For low

frequencies, an augmented Mindlin equation can be obtained

with relative ease.

Beginning with the longitudinal equation of motion

from Liamshev [31]:

m 2

[-V2 +-Ala ut2D -- Ul(X)
D3t2 1

h 2 m 22 2  + -EI v D 1)-'t21 ql(x). (35)

Previously, u(x) and q(x) included only the antisymmetrical

components; here, U () represents the symmetrical

displacement of the plate surface produced by the longitu-

dinal wave, and ql(x) represents the symmetrical loading on

the plate. This equation is valid only at low frequencies,

but, as will be seen later, its range of validity is very

much in line with that of the results derived for antisym-

metrical waves.

Proceeding as before, the Fourier Transformation of

Equation (35) is

2  22 2 2(K - K1
2 ) U1  2 E h(K - 2K 1 2) Q1 . (36)

The corresponding impedance is then given by

/ -(K 2 - K 2 /2 - 2I2 (37)

z I/p ( -K,)/(K ZK 1  (37

where 2 Z2/(kchK1)2

This derivation serves to correct several typographical

errors which occurred in Stuart and Jensen [66]. The

?664
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results now appear to be consistent with those published by

Liamshev [32] but disagree with the recent work of Dym et

al. [67] by the equivalent of a factor of two in Z1 .

The transmission ratio is thus given by

T - 2 Z a /(2 Z a + Z p) + Za (Za + Z1). (38)

As will be seen in Chapter 5, this composite equation will

accurately predict the transmission of a sound wave through

a submerged plate at oblique angles for frequencies up to

nearly ten times the classical coincidence frequency of the

plate.

2.4 Bounded Beams

The theory developed in the preceding section applies

to infinitely wide plane waves and predicts quite accu-

rately the far-field sound pressure level versus angle of

incidence. It does not, however, predict the lateral shift

or the feathering exhibited by acoustic beams having a

finite width. These phenomenon can be treated by introduc-

ing a Taylor series expansion in the development of the

reflection (or transmission) coeffecient.

First, the reflection coeffecient can be written in

the form

JO(Kx )
R(Kx) R(Kx ) e • (39)

The reflected pressure can then be expressed by the trans-

form
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~(x,0) .f GoF (Ke j ' R(K x)e dO( c . (40)

Considering a bundle of plane waves travelling in slightly

different directions relative to the axis of the main beam,

a Taylor series expansion around K is equivalent to

physically summing many plane waves around Ki. each

travelling in a slightly different direction. The resul-

tant is a bounded acoustic beam travelling in the 1

dirlection. The expansion takes the form

F(K ) F( F + (K - K )F'(K 1) (41)

-A + BK . (42)

The reflection coeffecient becomes

R(K ) R(K )+CK -K )R'(K )exp(JVO(K X)+(K -K ) ( ]--.
X i i i xi(43)

( R 1+ R 2K x)e J0c)expfj(K -K iW i)... (4

If the K xdependence of F and R is neglected relative to

that of the exponent, then the reflection coefficient

simply becomes

R(K) R(K )exp~j[(K -Ki~~Ci+ ] (45)

and the Fourier integeral for the pressure reduces to

j i x jIK x

p r mf F(Ki)e R(K i)exp{ (iK-ci) '}e dKi (46)

U!F(Ki)R(Ki e-JlK1 ' eKx (X0O) di (47)
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R(Ki)pi(x-O'). (48)

Thus, the reflected and transmitted beams are shifted in

the positive x direction by

Ax- " (49)

This same mathematical treatment is frequently used in the

computation of transients for filter designs.

The preceding computation assumes that K -

that F(K) - F(Ki) and R(K) R(Ki), and thus considers

only a narrow angular region. If this assumption does not

apply, it may be necessary to decompose R and F into

several K groups and perform the integration for each

group separately.

The critical asumption is in the Taylor series

development, i.e., that the phase angle is given by

O(Kx) - O(Ki ) + (KX-Ki)'(Ki) + ... (50)

This implies that the contributing wavenumber range (K x-K i)

must be small, since O,'(Ki) may change quite rapidly for

large values of (Kx-K i). Hence, the angular spectrum of

the incident beam must be narrow, since the contributing

wavenumber range for a beam of width a is of order

K 1 - r /a. (51)

The width of the beam must then be large compared to $'(Ki)

which is equal to the magnitude of the beam shift, since

the Taylor series will converge if
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(x-oi)n( << (52)

or to a first order approximation if

(ICx- i ) << 1lo'(;c ). (53)

2.5 Transmission of Bounded Beams

If the amplitude of the incident wave is constant, and

its trace velocity is such that k sin0 is equal to theo

wavenumber, Kn of a free plate wave, i.e., a Lamb wave,

then only this wave will be excited and other wave compo-

nents can be neglected. Under non-ideal conditions, other

waves may be excited; most frequently, these waves arise

because of the finite width of the beam and because of

inhomogeneities in the velocity distribution of the inci-

dent beam.

If the half-width of the acoustic beam is a, then in

the interval -a < x < a, the forced excitation creates two

plate waves travelling in opposite directions (see Figure

6). The wave propagating in the same direction as the

incident wave, i.e. whose K n has the same sign, will have a

significantly greater magnitude. Assuming that Ki is

positive, then

jK OC -K"(x+a) iKn(X+a)

p - D( K )(e 0 - e n (54)

The two waves interfere because of the phase difference.

At the left edge, the interference is destructive and the
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FIGURE 6. Plate wave excited by a bounded beam.
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net result is zero. At the right, the interference is

constructive and grows exponentially toward the value

D(K ). The plate wave must travel a distance approximately0

equal to the excitation distance before reaching full

amplitude; thus, if the beam width is small compared to

1/ K ", the transmitted wave may be considerably smaller0

than the predition for a beam of infinite width. This

excitation distance is given by

Wfl/2 - (2r/wm)(w/2) - r/m = poco /p ph (55)

K " - WrI/ec = P0 c /0p c h (56)n p oo p

For the case of an aluminum plate in water, K " becomes:n

K " ~ h/10 (57)
n

and

xext I/" ~ 10h. (58)

For a longitudinal plate vibration, the tranverse vibration

is approximately equal to fl (4 being the longitudinal

velocity component) and the excitation distance is approxi-

mately I/n2 times as great, i.e.,

xext - 1OOh. (59)

Thus, for longitudinal waves, the excitation distance is

significantly greater than for transverse vibrations.



CHAPTER 3

EXPERIMENTAL APPARATUS

3.1 Introduction

The data were obtained with a quantitative schlieren

system. A general schematic of the system is shown in

Figure 7, and schematics of the electronic layouts are

shown in Figures 8 and 9. The geometrical configuration

depicted in Figure 7 originated with Toepler's work in the

1860's [68-72]. Although several other configurations have

been developed since then, this is still one of the most

successful of the choices available. The only changes from

Toepler's original design are direct substitutions of

modern technology. A laser, for example, was substituted

for the spark gap, which Toepler used for a light source,

since the major requirement was simply high intensity. The

only other significant change, assuming that modern elec-

tronics can pass without mention, was the substitution of a

closed circuit TV camera at the exact position Toepler

described as the location at which the experimenter should

place his eye. Actually, there are also other ways in

which the schlieren image could be observed. These include

-WNW&
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FIGURE 9. Layout of the data acquisition system.
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placing a ground glass screen or a photographic plate at

this same location. The photographs presented both by

Toepler in the 1860's and those presented herein were

obtained in this manner.

The use of a vidicon, however, opened up the possibil-

ity of obtaining quantitative data. Earlier attempts to

quantize schlieren data were limited to densitometer

analyses of schlieren photographs, which were not overly

successful. In recent years, considerable technology has

evolved for processing video signals, which gives rise to

an alternative approach. Briefly, it consists of sampling

the voltages at equidistant points along each horizontal

line of the video scan, storing the resulting data points

(which represent brightness), and then plotting the sequen-

tial list. This produces a plot corresponding to optical

intensity along a vertical line down the TV screen. Since

optical intensity can be directly related to acoustic

pressure amplitude in a schlieren image, this plot also

corresponds to the amplitude of the acoustic field along

this vertical slice.

3.1.1 Optical System

The details of the optical system can be understood

most easily by following the path taken by the laser beam

as it passes through the apparatus, i.e., left to right as

shown in Figure 7. The light source was a Spectra Physics

Model 125 laser, which generated a continuous 50 mW beam of
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632.8 nm light. This beam was strobed by means of an

Isomet Model 1205 Acousto-Optic Modulator. The Modulator,

basically a Bragg crystal deflector, was driven with a

Dranetz Tone Burst-Timing Generator (Series 206). This

also supplied the acoustic pulse to the transducer and thus

permitted a precise adjustment of the time delay between

the optical strobe and the acoustic pulse. The net result

was that the acoustic pulse could be photographed at

numerous discrete points, and thus its path across the

field of view could be determined even when the pulse

reflected back from complex structures scattering out in

many directions. An electronic interface was designed and

constructed for the purpose of mating the Tone Burst

Generator to the Acousto-Optical Modulator, which were

originally incompatible with one another. By incorporating

a monostable multivibrator in this interface, it was

possible to improve the strobe speed from 10 Us to 100 ns.

The speed was continuously adjustable from 100 ns to 100

Us. Normally, the duty cycle was set between 2 - 5 kHz.

Even at these speeds, there was sufficient light passing

through the system to require the use of neutral density

filters in order not to oversaturate the TV camera. The

100 ns strobe speed allowed the acoustic pulse only enough

time to travel 0.006 in. through the water, which obviously

produced no observable smearing of the resulting photo-

graphs. This was a considerable improvement over the

original 10 Us strobe speed, which would have permitted a

skid of over half an inch.
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Having travelled through the Acousto-Optical

Modulator, the laser beam passed into a Space-Optics

Research Labs optical beam expander. This consisted of

little more than a pin hole and the necessary optics for

isolating .and collimating the light in the zeroth diffrac-

tion order created by the pin hole. The resulting 5 in.

diameter beam then passed into the test tank.

The tank was constructed from 1/2 and 3/4 in. sheets

of Lex~n, with a width and height of 2 ft and a length of 4

ft 3 in. Waterproofing was accomplished by means of the

same silicone rubber sealant used in commercial aquariums.

Aluminum angle bracing was added to the long sides to

reduce the bowing produced by the weight of the water. The

clear Lexan greatly eased the problems of positioning the

transducers and various test samples, but it was not, of

course, of sufficient optical quality to consider passing

the expanded laser beam through it. Consequently, 10 in.

diameter holes were cut out of the two long sides and

replaced with 1/10 wave optical glass windows. The use of

optical glass seems, in retrospect, to be unnecessary. Due

to several serious reams in the original pair of optical

glass windows, they were returned to the manufacture for

exchange, and the apparatus was used for several months

with ordinary float-glass windows. The results were

sufficiently satisfactory that it appears the best proce-

dure would have been simply procuring a half-dozen pieces

of float glass and using the pair which performed best.
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A pair of sliding cross rails were added to the top of

the tank for use in positioning the transducer and the test

samples. A small low-geared motor was used to raise and

lower the projection angle of the transducer. Angular

scales, which were inscribed at each degree, were included

for determining the pitch angle of the transducer and the

yaw angle of the test sample. The reproducibility was

easily within 1/4 degree when the backlash in the gears was

correctly countered.

Upon leaving the test tank, the optical beam passed

through a 30 in. focal length Space Optics Research Lab

lens; this focused the beam onto a slide glass cover

resulting in a spot approximately 1/2 mm in diameter. An

opaque stop, which was as nearly as possible the same size

and shape as the spot of light, was placed at this focal

point. The zeroth diffraction order was thus completely

blocked out and only higher diffraction orders produced by

the acoustic disturbances in the water, if any, passed into

the TV camera.

3.1.2 Spatial Filtering

The size of the optical stop is critical. It must be

large enough to block out all of the light passing through

the quiescent system; otherwise, the background level is

increased and the dynamic range of the system is degraded.

Therefore, the stop must be at least as large as the circle

of least confusion; the question is how much larger - if
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larger at all. From the original series of papers by Raman

and Nath [73 - 79], it is quite well known that the rela-

tive intensity of each diffraction order is given by the

square of the Bessel Function, Jn2 (v), where n is the order

number and v is the Raman-Nath parameter,

v = kPL, (60)

where p is the index of refraction in the medium and L is

the width of the sound beam. If the zeroth order is

filtered out and all remaining orders passed through, the

resulting intensity is then given by

2I = 2 J (v). (61)
n=1n

This is shown graphically in Figure 10. Also shown are the

corresponding curves for larger stops, and specifically for

a stop which blocks both the zeroth and the first order and

one which blocks the zeroth, the first and the second

order.

A line which approximates the background level found

with the actual experimental system is also included. This

background is mainly due to the ambient room light, but

also includes stray light from scattering phenomenon, etc.

The background was minimized by collecting all data at

night when the overhead work area lights could be extin-

guished.

The dynamic range to be expected from the system can

be estimated from the point at which the intensity rises
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n-3 blocks the zeroth, first and second orders [cf. 80].
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above the background and the point at which the curve

becomes multivalued. If only the zeroth order is stopped,

the dynamic range is thus seen to be about 20 dB; stopping

the first order in addition to the zeroth order reduces

this to 11 dB; and increasing the stop size further to

include the second diffraction order further reduces the

dynamic range to 8 dB. The conclusion seems to be that the

preferable choice is to stop only the zeroth order.

Experimentally, this is by far the most convenient choice,

since the size of the circle of least confusion is indepen-

dent of the acoustic frequency, while the distance between

the diffraction orders is directly related to the

frequency. Thus if one wished to block both the zeroth and

first orders different-sized stops would be needed for each

frequency of interest. If only the zeroth order is to be

blocked, only one size stop is needed.

The actual stop was mounted in a ring with a finite

diameter, which means that not all of the infinite set of

diffraction orders was passed through to the video camera.

Figure 11 shows, for the first time, the effect of trans-

mitting only a few diffraction orders, i.e., of prematurely

truncating the series given in Equation (61). It can be

clearly seen that surprisingly few terms need to be

included in order to approximate the useful portion of the

curve. Four diffraction orders are sufficient to duplicate

the part of the curve lying between v - 0 and v = 2.405,

which covers all intensities between I - 0 and I - 1,



51

I J J~(V)

Large
Aperture

n= 6

n 5

n 4

n 3

Small
I.~o Aperture

o nI

Romor,-Noth Porometer

FIGURE 11. The effect on optical intensity is shown for
concentric rings of various sizes.



52

respectively. The size of the holder ring was far too

large to have any detrimental effect on the schlieren

image, even at the highest frequencies used. An interest-

ing possiblity would be an attempt to use this fact to

filter out the higher harmonics of the acoustic transducer

by adjusting the diameter of a concentric ring surrounding

the stop. The higher harmonics are especially prevalent in

photographs taken at extremely low frequencies, since the

sensitivity of the schlieren system is highly dependent on

the acoustic frequency.

3.1.3 The Acoustic System

The acoustic system interfaced with the optical system

as shown in Figure 8. This portion of the experimental

equipment was indicated in the general figure (Figure 6)

simply as a tone-burst generator. In reality, a Hewlett

Packard Model 606B Signal Generator was used to produce a

cortinuous sine wave signal for the frequency range above

50 kHz and a GenRad Type 1162A Frequency Synthesizer was

used for lower frequencies. The Tone-Burst Generator,

which was described in Section 3.1.1, then gated this

signal into a series of short (generally 10 us) pulses and

simultaneously produced the timing signals used to strobe

the laser beam. The acoustic pulses were amplified with a

Model 240L ENI Class A RF power amplifier and matched to

the transducers by means of an ENI Model 240-2T trans-

former.
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The acoustic transducers (see Table 2) were, for the

most part, constructed from single thickness-mode discs of

PZT-4 ceramic. The discs were mounted in cylindrical

aluminum housings with air backing by use of silicone

rubber sealant. The design criteria developed in Section

2.2 were used and proved to be quite successful. The

resulting transducers were quite well collimated in the

range of 3-12 in. One additional transducer, shown in

Figure 12, was constructed for use at frequencies below 30

kHz using the traditional tonpilz design.

3.1.4 Data Acquisition

The data acquisition system layout is shown in Figure

9. Briefly, the data were obtained by electronically

sampling the horizontal lines on a standard television

raster. The starting point of each line was identified by

means of the blanking pulse and then, after a given delay

time, the voltage was stored and the next line sampled.

The resulting set of sequential stored values corresponded

to the voltage curve plotted along a vertical slice down

the screen. This vertical sample line could be adjusted to

any required location by simply adjusting the given delay

time. The stored data was either displayed in real time on

an oscilloscope was plotted by means of an x-y plotter.

Two calibrations were necessary. First, the response

characteristics of the vidicon tube had to be found.

Normally, this would have to be repeated for a large number
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TABLE 2

TRANSDUCERS

I Ident. I Resonance I Diameter I

I AL180A 1 195 kHz 1 2.0 in.

I AL180B 1 190 1 2.0I

I AL180C 1 189 12.0I

AL340A I 353 I 1.5

AL80 692 1.0

I AL680B 1 688 I1.0I

I BR-i 1 362 1.0

I AL-27 1 27 I1.5 in. sq.I
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FIGURE 12. Tonpilz transducer resonant a t 27 kHz.
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of locations across the face of the tube, since the

response falls off quite noticeably near the edges.

Because of the experimental techniques described in Section

5.3, this was generally avoided and only the response curve

for the center point of the tube was necessary. This was

determined by turning off the acoustic system, which has

nothing to do with this particular calibration, and record-

ing the voltage sample level for the laser beam masked by a

large range of neutral density filters. This produced the

characteristic curve shown in Figure 13.

The second calibration gives the correlation between

the acoustic pressure and the optical intensity. This was

performed by placing an acoustic beam across the center of

the field of view and taking data scans for a wide range of

transducer drive voltages. The actual voltage at the input

terminals of the transducer was used to avoid the possibil-

ity of nonlinearities arising from the amplifier circuits.

This still assumes that the transducer itself was linear,

which is generally not an unreasonable assumption. The

resulting calibration curve is shown in Figure 14. This

data collection system is described more fully by Stanic

(811.
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CHAPTER 4

QUALITATIVE OBSERVATIONS

4.1 Low Frequency Schlieren

Schlieren systems have long been used for qualitative

studies of sound fields. The quantitative data presented

in Chapter 5 demonstrate clearly that schlieren systems can

now be used to obtain very accurate quantitative descrip-

tions of acoustic fields. Such quantitative data, however,

only supplements the more traditional schlieren photo-

graphs; it cannot, and is not intended to, supplant the

photographic representations which yield excellent over-

views by means of their full two-dimensional depictions of

acoustic fields. The quantitative data curves on the other

hand are intended to collect the amplitudes of single

points on the photographs and show the change in that

amplitude as a function of the various parameters such as

angle of incidence or frequency. It should be noted that

the observations presented in this chapter resulted from

over 1000 hours of viewing real-time schlieren images; the

photographs presented herein were culled from the full

collection for their representativeness and for their

reproducibility.
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One of the most striking achievements of this research

was the demonstration of the schlieren effect at frequen-

cies nearly two orders of magnitude lower than those

traditionally used with the schlieren technique. Figure 15

shows a very clear, sharp photograph of an acoustic field

at 27 kHz. The lowest limit achieved by earlier investiga-

tors was 50 percent higher than this frequency (82].

4.2 Transmission Through Flat Plates

Figure 16 depicts the acoustic transmission through a

0.032 in. thick aluminum plate at a frequency 7.7 times the

classical coincidence frequency of the plate. This corres-

ponds to the same conditions as for Figure 36. The inci-

dent beam in these photographs, and those to follow, enters

from the upper left, and is partially transmitted into the

lower right quadrant and partially reflected into the lower

left. Figure 16(a) shows the transmission at the critical

angle for the A0 Lamb mode, and Figure 16(b) shows the S0

Lamb mode. Two observations should be noted, both of which

are more clearly shown in Figure 16(b). First, the

reflected beam shows the characteristic dark band, which

has been interpreted [551 as the overlap of the specularly

reflected beam and the reradiated field from the Lamb wave,

which are 1800 out of phase and thus cancel each other.

Second, by lining up the upper edges of the incident and

transmitted beams, one can see an obvious downward shift in

the location of the transmitted beam from that which would
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FIGURE 15. Schlieren visualization of a 27 kHz acoustic
field.
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be normally expected. This shift was first explained by

Schoch [53]. Very precise experimental measurements by

Neubauer [54] exposed flaws in Schoch's theory due to his

assumption of a flat intesity distribution across the beam

and to the inapplicability of the theory to narrow acoustic

beam widths. By interpreting the shifted beam as a reradi-

ated beam produced by the Lamb wave travelling down the

plate, Bertoni and Tamir [551 obtained very satisfactory

agreenent with Neubauer's measurements.

Figure 16 was obtained by using a continuous acoustic

beam, while Figure 17 was obtained by using a short 10 is

pulse. Figure 17 shows the reradiation from the A1 Lamb

wave for the same condition as Figure 16. The photograph

was taken approximately 30 .is after the incident pulse

contacted the plate; as the Lamb wave travelled down the

plate, it reradiated energy into the surrounding medium.

This gradual loss of energy in the plate wave is shown by

the corresponding loss in intensity of the reradiated

pulse. Note that the upper portion of the pulse is thus

much brighter than the lower portion.

A small pulse of acoustic energy incident at an

oblique angle on an infinite plate normally reflects back

as a compact pulse package retaining its original shape.

However, as was shown in Figure 17, if a Lamb mode is

excited, the shape of the pulse can be greatly elongated.

A distortion in the shape of the pulse can occur, even for

normally incident pulses as is shown in the sequence of
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FIGURE 17. Transmission of a 10 is acoustic pulse through

a 0.032 in. thick aluminum plate at a frequency of 2.125
M11z, which is 7.78 times the classical coincidence
frequency of the plate. Transducer AL680B which has a beam
width of 1.0 in. was used. The A Lamb mode is excited at

an angle of incidence of 6.50. 1

o
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Ui

FIGURE 18. Transmission of a 10 ps acoustic pulse through
a 0.501 in. thick aluminum plate at a frequency of 680 kHz,
which is 14.9 times the classical coincidence frequency of
the plate. At normal incidence this excites the S1 Lamb
mode. Transducer AL680A which has a beam width of 1.0 in.
was used.
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photographs reproduced in Figure 18, which shows the

initial emergence of the SI Lamb mode at 00.

4.3 Edge Effects

As has been seen, when an incident wave strikes an

infinite plate, or one of sufficient size that the edges

are many wavelengths away, then there are beams transmitted

and reflected (or reradiated) in only two directions. Near

the edge of a finite plate, however, the Lamb wave will be

reflected from the plate edge and travel back up the plate.

This can set up a strong standing wave in the plate, which

will then greatly complicate the resulting radiation

pattern. This is demonstrated in Figure 19. In this

photograph, the SO Lamb mode has been excited and the

superposition of the fields reradiated by the Lamb wave

travelling in opposite directions in the plate shows a

clear standing wave pattern in the surrounding medium with

the wave fronts perpendicular to the plate. It is not

uncommon to see standing-wave patterns near a plate due to

the superposition of the incident and the specularly

reflected wave, but, in that case, the wave fronts are

necessarily parallel to the plate, not perpendicular.

Furthermore, they appear only on one side of the plate.

As was noted above, one normally sees only two beams

emerging from the plate. When a Lamb mode is excited, the

situation becomes more complex because there is now a

radiation field superimposed on top of the specular field.
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FIGURE 19. Transmission of an acoustic beam through a
0.023 in. thick steel plate at a frequency of 2.125 MHz,
which is 5.26 times the classical coincidence frequency of
the plate. The S Lamb wave is excited at an angle of
incidence of 17.5 ; the edge of the plate causes the
formation of a standing wave pattern in the surrounding
medium. Transducer AL680B which has a beam width of 1.0
in. was used.
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For an infinite plate, there is little energy radiated into

the upper quadrants but, near the edge of a finite plate,

this is not true. In Figure 20, the incident beam has been

moved even closer to the edge than was the case for Figure

19. Figure 20(a) shows a beam being radiated quite

strongly into the upper right quadrant. By changing from a

continuous beam to a pulse, as in Figure 20(b), it can be

further seen that there is also a strong beam being ra4i-

ated directly back along the path of the incident beam

toward the transducer. The same phenomenon can be seen

again in Figure 21 for a much lower frequency. Backscat-

tering does not occur near the center of the sample plates

with nearly as great an intensity as near the edges, which

can be seen by comparing these last two figures with Figure

22. This figure shows a direct comparison between a beam

incident near the center and one incident near the edge of

the same steel plate with the same acoustic conditions.

4.4 Negative Phase Velocities

The dispersion curves in Figure 53 for aluminum show

that, in a very narrow frequency range near the onset of

the S Lamb mode, the individual modal curves can become

double-valued. Both Tolstoy and Usdin [61] and Viktorov

[491 speculated that this could be caused by the occurrence

of a negative phase velocity. This would imply that the

Lamb wave travels in the opposite direction in the plate

from the previous examples in this chapter. This would
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result in the reradiated pulse from the Lamb wave appearing

on the opposite side of the plate-normal from the specu-

larly reflected pulse. The time sequence of photographs in

Figure 23 shows this. Note that, in Figure 23(c), the

transmitted pulse is shifted upwards rather than downwards

as before. In the remainder of the sequence one can see

that the dark area representing the overlap of the specu-

larly reflected pulse and the radiation from the Lamb wave

is also angled in the opposite direction from the previous

cases. Refer back to Figure 16, for example.

The sequence in Figure 24 shows a gradual increase in

the angle of incidence. The phenomenon is quite obviously

confined to a very narrow angular region as should be

expected. It is also confined to a very narrow frequency

range as is shown in the sequence in Figure 25.

4.5 Stroboscopic Observations

Under normal conditions, the schlieren system is

operated in such a way that all data are collected using

uniform, continuous acoustic beams as was shown in Figures

26. This is necessary to obtain accurate quantitative

values for the magnitude of the peak of the resulting beam

profile. It also possible to adjust the period of the

flashing laser beam and the acoustic frequency so that a

stroboscopic effect will result. A schlieren photograph

showing this possiblity is shown in Figure 27. The photo-

graph is, at first, somewhat misleading. The standing
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FIGURE 27. A 680 kHz acoustic beam is incident on a 0.023
in. thick 304-stainless steel plate at an angle of 100.
The travelling wave fronts on the transmitted side of the
plate are frozen by adjusting the stroboscopic repetition
period to Tld = 2 ms. The wave fronts appear stationary
only at the discrete acoustic frequencies of 620.000 klz,
620.250 kHz, 620.500 kHz, etc. Transducer AL680A was used
which has a beam width of 1.0 in.
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waves produced by the overlap of the incident and reflected

beams are shown occurring parallel to the plate as would be

expected and, in fact, has been observed in other photo-

graphs. There are also stationary wavefronts perpendicular

to the plate, but these represent travelling waves in the

plate which have been frozen by the stroboscopic effect.

Proof that this is in fact the correct interpretation of

the photograph is presented in Figure 28 and Table 3. For

a fixed value of the strobe period, T1 = 2 ms in this case,

the wave fronts perpendicular to the plate appear to be

stationary only at discrete acoustic frequencies. For the

case shown, these discrete frequencies are spaced exactly

250 kHz apart, i.e., at f - 1/2TI, which is to be

expected since the distance between the fronts shown in the

schlieren images is X/2.

The stroboscopic schlieren effect lends itself to many

applications. The distance between the travelling wave

fronts that appear perpendicular to the plate is determined

by the incidence angle and the wavelength in the surround-

ing medium. Thus, given the acoustic frequency and the

angle of incidence, the velocity in the surrounding medium

can be found from the distance between these wavefronts (c

- 2fd sine). In some applications, the angle of incidence

is difficult to determine; the stroboscopic schlieren

method could prove useful in that case. A valuable appli-

cation for the current schlieren system would be as a means

to obtain a very accurate calibration of the linear
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TABLE 3

Acoustic Frequencies Producing the Stroboscopic Effect

Freq. I Angle I sinO i I x 2sinei SpacingI

1 194kHzI 0.48 1 10 1 0.177 1 0.309"1 0.891"1 0.565"1
I I I I I I I I
1 194 1 0.48 1 20 1 0.342 0.309 1 0.459 0.436

194 0.48 30 0.500 0.309 I 0.314 0.320

620 1.53 I10 0.177 0.097 0.279 0.280

I 620 1.53 20 0.342 0.097 0.142 0.141

1 620 1.53 30 0.500 0.097 0.097 0.099

1
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distances depicted on the photographs and on the dataline

plots such as were shown in Figures 26 and 28. This

calibration is normally quite difficult to obtain accu-

rately and is necessary for the investigation of the beam

shift phenomenon, etc.

4.6 Examples

The standing wave pattern shown in Figure 19 was

produced by the reflection of the S Lamb wave from the
0

free edge of the plate. The spacing between the wave

fronts agrees quite well with the value of one-half the

trace wave length at the plate surface. This can be

checked in two ways. First, the diameter of the circular

image corresponds to the aperture of the optical beam which

is known to be 5 in. Thus, the scaling factor of the

figure is 1:1.69 and the spacing is 0.0485 in. The theor-

etical spacing can be calculated from the measured angle of

incidence, 17.50, and frequency, 2.125 MHz. Hence,

X/2 - Xw/2 sin i  = cw/2f sinei

= 0.0469 in. (62)

Similar analysis of more complex experimental geome-

tries is also possible. Figure 29 shows an experimental

model with a short 10 Us pulse of 900 kHz sound incident on

it from the lower left. The pulse struck the flat bottom

of the model just to the left of the field of view approxi-

mately 40 Us before the photograph was taken. The surface
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FIGURE 29. Example of the detail of analysis possible with
stroboscopic schlieren techniques. A 10 ps pulse of 900
kHz sound is shown incident on the bottom of a curved
structure (831.
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wave travelling along the curved bottom radiates out into

the medium as is shown by the curved sound field below the

model. When the plate wave strikes the prow, it radiates

out into the medium in the forward direction, and also a

portion of it reflects back in the plate creating a stand-

ing wave evidenced by the wave fronts which appear in the

surrounding medium perpendicular to the surface of the

model.

The distance between the wave fronts in the forward

radiated field correspond closely to the expected 0.067 in.

wavelength of the 900 kHz signal. The spacing between the

wave front perpendicular to the surface, however, are

considerably larger than what would be expected based on

the measurements previously presented for flat plates. The

actual velocity of compressional waves in the aluminum

plate used for the bottom of the model was measured in the

Applied Research Laboratory's Non-Destructive Testing

Facility and was found to be 6861 m/s. This was consider-

ably higher than the 5400 m/s velocity found for all of the

aluminum alloys used in the investigations of flat plates.

This would explain much of the discrepancy in the spacing

of the perpendicular wave fronts.

4.7 Welded Plates

An important practical question in many engineering

applications concerns the effect of structural welds on the

reflected and transmitted sound fields. In order to gain
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further insight into this question several models were

constructed with different types of joints. A comparison

of ribbed plates is shown in Figures 30 to 32. In Figure

30, two models are shown at identical experimental condi-

tions. The model shown on the left was constructed by

welding the rib into place; the model on the right was

machined to the same dimensions from a single block of

material. As can be seen, the structure of the transmitted

sound field is quite similar, while that of the reflected

field is not at all the same. The frequency and angle were

chosen such that the A0 Lamb mode was excited in the plate.

The reflected field in Figure 30 (b) has the same charac-

teristics as exhibited by beams reflected from plain flat

plates near a Lamb mode; i.e., an overlap of a specular

reflected field and a reradiated field with the dark band

due to the 1800 difference in phase between the two fields.

The welded plate in Figure 30 (a), on the other hand, is

quite dissimilar. It is evident that the weld bead has had

a considerable effect on the flexural wave as it travelled

down the plate. A similar comparison is shown in Figure

31. Although the same A0 Lamb mode has been excited, the

difference between the two reflected fields is not nearly

as sharp.

Figure 32 has been obtained using a stroboscopic

effect and can be analyzed in somewhat more detail. The

diameter of the optical aperture, the thickness of the

plate and the spacing between the wavefronts in the
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[_

FIGURE 32. Acoustic beam incident of a 0.056 in. thick
30 4-stainless steel plate with a machined joint at an angle
of 40'. The A0 Lamb wave is excited at a frequency of 622
kHz.
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incident beam all provide means of determining the linear

scaling factor of the figure and all agree to within 3

percent of each other. Thus, the actual spacing between

other features of interest can be obtained quite reliably.

The spacing between the wavefronts which occur parallel to

the plate on the incident side are due to the standing

waves formed by the superposition of the incident and

reflected waves. At 622 kHz, the wavelength of the inci-

dent sound beam should be 2.39 mm and, at 400, the spacing

between these standing wavefronts should be 3.12 mm (i.e.,

X/cose). The actual measured spacing is 3.1 mm. The A0

Lamb mode radiates sound from the plate in such a way that

wavefronts are formed perpendicular to the plate and have a

spacing X/sine. These are seen most clearly on the right

side of the plate just above the rib. The measured spacing

between these wavefronts is 3.6 mm which compares quite

favorably with the computed spacing of 3.72 mm. The

wavefronts evident below and perpendicular to the rib

exhibit the same measured spacing, 3.6 mm; it is thus

apparent that the same A0 Lamb mode has been excited in the

rib as was excited in the plate.

To investigate this more thoroughly, a set of models

were constructed by butt-joining pieces of sheet steel

edge-to-edge, by several different methods. Figure 33

shows a reference photograph of a solid plate having no

joint together with three plates of the same material but

joined by soft soldering, by silver soldering, and by
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welding, respectively. The soft solder, Figure 33(b),

shows a beam being radiated into the upper right quadrant

of the photograph, just as one would expect from the free

edge of a plate (see Figure 20, for example). The silver

solder, which forms a stiffer joint, shows a reduction in

the intensity of this particular beam, and the final

photograph of Figure 33 shows that the welded plate, which

has an even higher stiffness, exhibits no evidence of a

beam in the upper right quadrant. The correlation of this

sequence of photographs with the stiffness of the joint and

the resulting similarities with the previous photographs

showing the effects of free edges is quite remarkable.



CHAPTER 5

QUANTITATIVE RESULTS

5.1 Benchmarks

The two benchmarks against which the success of this

experimental method must be judged are the previous quanti-

tative schlieren techniques by Smirnov et al. (84] which

used densitometry methods and by Stanic [811 which used

video sampling methods. Densitometry requires careful

preparation of photographic negatives and their accompany-

ing calibration curves. ,This is a slow tedious task since

the results are highly sensitive to the timing, tempera-

ture, etc., of the photographic development process.

Spectroscopists, however, have raised densitometry to a

high art form and the results of Smirnov et al. reflect

this. They present a table of 25 data points for the

transmission through plates which demonstrate an agreement

with theory with an error of only 6 percent.

The video sampling method used by Stanic (and in this

investigation) should be capable of the same degree of

accuracy obtained by Smirnov, if not greater. The calibra-

tion procedures are nearly identical, except that it is a

vim



100

vidicon tube which must be calibrated rather than a

shipment of photographic supplies. This should be an

advantage over the densitometry method. The results

published by Stanic do not reflect this expectation. He

gives no estimation of error, but one can easily be found

by performing a regression analysis on the 85 data points

he presents in Reference [811. Data from Figure 36 of

Reference (81] is replotted in Figure 34 with the classical

and Mindlin theories added for comparison. Note that

because no data is included near the region of 00 to 300

that the inclusion or omission of the longitudinal wave

term developed in Section 2.3.3 is immaterial in the error

calculation. These data can thus be regressed onto the

Mindlin curve (known to be more accurate than the classical

theory in this frequency range) and the RMS value of the

residuals gives a value of 75 percent for the standard

error of estimate, which does not cctmpare favorably with

the 6 percent error found by Smirnov. Even more disturbing

is the fact that, when the data is regressed onto the

classical curve, the standard error improves slightly,

indicating that the data does not support the Mindlin

theory as well as it does the classical.

The remainder of this chapter will be devoted to an

attempt to vindicate both the video sampling method of

quantizing schlieren data as well as the Mindlin plate

theory. Additionally, data will be presented which demons-

trate the effects of the longitudinal wave term. It will
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also be shown that not only is the video method capable of

the same 5-6 percent level of accuracy found by the densi-

tometry method but that the schlieren system developed at

the Applied Research Laboratory is able to maintain that

level of accuracy at frequencies as low as 179 kHz.

5.2 Simple Plates

Extensive transmission data were collected on simple

flat metal plates. Seven thicknesses of sheet aluminum and

six transducers with different resonance frequencies and

accompanying higher harmonics provided an effective

frequency range from 0.5 to 110 times the classical coinci-

dence frequency of the plate. Consequently, it was possi-

ble to plot transmission loss curves as a function of the

angle of incidence for nearly 100 values of the frequency

parameter, S. Each of these contained approximately 70

data points spaced at one-degree increments ranging from

normal incidence, 00, to about 700, at which point the edge

effects of the plate rendered interpretation of the data

difficult. Although most of the data were obtained using

aluminum plates, representative data were also obtained for

304-stainless steel plates. The angular locations of the

peaks were then summarized in a single curve (for aluminum)

which represents the dispersion of the sound velocity in

the plate.
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5.3 Transmission Loss Curves

Transmission loss curves were obtained by comparing

the level of the transmitted sound to the level of the

incident sound beam at the same physical location in the

tank by simply removing the plate to obtain a reference

level. This technique removed the necessity of obtaining

calibration curves for a large network of points across the

vidicon tube. This would normally have to be done since

the response falls off near the edges of the tube. Angular

data were then obtained by rotating the sample about its

vertical axis, which can be visualized most easily by

referring to Figure 6.

Figures 35 and 36 show representative curves for

aluminum and stainless steel, respectively, at frequencies

below coincidence. Also included are the theoretical

predictions based on the classical plate theory and on the

augmented Mindlin theory developed in Section 2.3.3. At a

frequency as low as this, the two theories agree very

closely, as would be expected, with the exception of the

spike at 160 produced by the longitudinal wave component.

This phenomenon occurs at such a narrow angular range that

the experimental data do not follow the sharp rise. Still

it is interesting to note that the data do reflect the

existence of some anomaly occurring at this point. Since

the existence of the longitudinal wave is almost

universally ignored, the appearance of it at this low
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frequency would be an important result. A system with a

more narrow angular resolution could well demonstrate the

full effect of this phenomenon.

The presence of the peak in question becomes quite

clear at 0 - 1.5 as is shown in Figure 37 for aluminum and

at Q - 2.5 as is shown in Figure 38. As the frequency

increases, the peak broadens and the data is more able to

accurately reflect the amplitude as is shown in Figure 39

for Q - 4.73. Here, the limited dynamic range of the

experimental system becomes more noticeable. The back-

ground light level appears on the figure as an upper cutoff

at about 15 dB. This level is dependent on the power level

which the transducer is capable of delivering into the

water, as well as the alignment of the schlieren apparatus;

the best dynamic range ever achieved was 20 dB. Figure 40

for steel at 2 - 5.28 shows the problem even more clearly.

This truncation effect will appear in most of the remaining

data curves which will be presented herein. It should also

be noted that the addition of the longitudinal wave term,

even though it accurately predicts the shape of the peak at

160, is beginning to have a detrimental effect on the

theoretical predictions near the grazing angle. This will

also become more noticeable as the frequency parameter is

increased.

At - 6, a third peak produced by the A1 Lamb mode

appears at normal incidence and slowly moves outward as the

frequency parameter is increased. Simultaneously, the
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location of the "longitudinal" peak, actually the S Lamb0

wave, which up until now has remained consistently at 160,

begins moving farther out in the direction of the grazing

angle. This is shown in Figure 41 for 0 = 7.71. The

augmented Mindlin theory is, however, still able to track

the main lobe, which is produced by the A Lamb mode,0

remarkably well. This mode, as the previous sequence of

figures has shown, first appears at the grazing angle at a

frequency slightly above coincidence and moves in the

direction towards the plate normal, i.e., in the opposite

direction of all the other peaks. Figure 41 represents the

first accurate comparison between experimental data and

theory which includes all three of these Lamb modes.

Previously, only the locations, not the shapes of the

peaks, have been correctly reproduced.

As the frequency is increased further, the deviation

between the theory and experimental data becomes more

pronounced. This is as expected. An interesting point is

that the breakdown in the theoretical description of the

longitudinal wave did not occur at a much lower frequency.

At SI - 14.94 (Figure 42), this becomes quite apparent. A

fourth mode, S2 , has now appeared at normal incidence and

the A0 and S modes have coalesced into a broad peak att0

30\' Theoretically, 300 is the predicted lower limit for

the A mode. Also, note that the longitudinal wave model

is still predicting the same angle of 160, which is obvi-

ously incorrect at this frequency.
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As the frequency is further increased through the

range between - 15 and 35 as is shown in Figures 43 and

49, the amplitude of the lobe at 300 gradually reduces and

eventually vanishes at Q = 35. This phenomenon has appar-

ently not received previous attention in the literature.

None of the theoretical treatments to date predict such an

occurrence; yet, on inspection it appears to be real. The

peak in question is composed of both the A 0 and S modes,

which are, respectively, the lowest antisymmetrical and the

lowest symmetrical modes of the plate. When they both

reach 300, the phase velocities become nearly equal; thus,

the wavelengths approach the same value and phase. Conse-

quently, when the incident sound beam drives the back of

the plate, the symmetrical motion on the front of the plate

will be exactly matched and out of phase with the antisym-

metrical motion produced by the A 0 mode. As this cancella-

tion becomes exact, the amplitude of the transmitted wave

is reduced until it eventually reaches zero. This is shown

schematically in Figure 50. If the hypothesis is correct,

the same reasoning should apply to each A -S pair, andn n

this appears to be the case. The same effect can be seen

clearly for the A 1 -S 1 pair as well as the A 2 -S 2 pair, but

as the frequency is increased further into the Q - 100

range, the proliferation of new modes is such that it is no

longer possible to identify modes with absolute certainty.

An improvement in the angular resolution of the system

would be necessary. Figures 51 to 56 show the gradual
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(a) (b)

Antisymmetric Symmetric
Mode Mode

(c)

Superposition

FIGURE 50. Cancellation of modal pairs.
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movement of the peaks as the frequency is further

increased. The disappearance of each pair of peaks after

they have settled at their upper limit does appear to be

true for the lower peaks. Each A -S pair has a slightlyn n

lower limit than the previous pair; thus, as these peaks

vanish, the transmission is tightly confined to the region

near the normal of the plate. This same observation should

also apply to the radiation pattern of a vibrating plate;

i.e., as the frequency is increased above the coincidence

frequency of the plate, the radiation should be concen-

trated more and more into the angular region near the plate

normal.

5.4 Dispersion Curves

Although the shape of the peaks in the transmission

curves has proven to be very difficult to predict, the

angular locations of the peaks have been well known for

many years. In order to compare the results presented in

the last section with the theoretical results derived by

Rayleigh [11 and Lamb [3], the locations of each of the

peaks for aluminum have been summarized in Figure 57. The

theoretical curves have been replotted from Viktorov [49]

and apply for a Poisson's ratio of 0.34, which provides a

fairly accurate representation for aluminum. The coalesc-

ing and subsequent disappearance of the A -S pairs is
n n

clear in the experimental data, but, as noted previously,

the theoretical curves do not reflect this phenomenon. The
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Mindlin plate theory has been verified by many different

experiments and the sound transmission for specific Lamb

modes has been verified by many others, but always for much

more limited frequency ranges than the current investiga-

tion. The schlieren method makes it possible to study the

transmission of sound through plates, and thus to study the

effects of the Lamb modes in a very wide frequency range

because of the advanced equipment and the basic unintru-

siveness of the method.

Figure 57 shows the overall study of Lamb waves for

aluminum plates submerged in water. The frequencies are

normalized to the classical coincidence frequency of the

plate and cover the range from 1 to 100. The figure

represents a summary of approximately 7000 schlieren

recordings of incident and transmitted sound waves. The

theoretical curves included were obtained by numerical

solution of the Rayleigh-Lamb relation derived in Section

2.3.1.

Many of the individual sound transmission curves from

which Figure 57 was obtained are shown in Figures 35 - 56

plotted as functions of the incident angle. Experimental

evidence for the existence of the peak caused by the

longitudinal term not included in the original Mindlin

theory is quite apparent in many of these curves, and the

agreement with the theory presented in Section 2.3.3 is

quite good for frequencies up to nearly 10 times the

coincidence frequency.



CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 The Schlieren Method in the Range 27 kHz to 5 MHz

The video method of quantizing schlieren data was

shown to be a viable and accurate laboratory technique. By

using a periodically-interrupted, laser beam stroboscopic

illumination could be used to determine the characteristics

of complex acoustic fields, e.g., accurately measuring the

Lamb wave lengths associated with plate vibrations and the

surface wave lengths in the investigation of curved and

ribbed structures. Although previous investigators could

obtain data which had no better than a 75 percent accuracy,

the data presented herein consistently reflects a probable

error of 1/2 dB, i.e., 6 percent, in amplitude and 1/4

degree in angular resolution. (Figure 53 shows the typical

repeatability between experimental runs taken several

months apart.) This level of accuracy, together with the

speed and convenience of the video method over alternate

means of quantizing schlieren data, should offer greot

encouragement for its future use. The schlieren technique
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has long been recognized as a valuable laboratory tool.

The added ability to produce extremely accurate quantita-

tive data will greatly enhance this value.

6.2 Results

By making use of stroboscopic illumination to investi-

gate progressive waves and constant illumination to inves-

tigate standing wave fields, an exact analysis of complex

wave fields could be performed that was heretofore impossi-

ble. The various field components such as radiation due to

progressive Lamb waves, due to Rayleigh surface waves, or

due to forced excitation of steady-state vibrations could

be uniquely analyzed with very high accuracy. It was thus

possible, for instance, to examine accurately the vibration

of complex structures such as joints, ribbed joints, and

curved bodies.

Much work was also done in the investigation of the

transmission and reflection of bounded acoustic beams. The

acoustic transfer function derived by Stuart [401 and the

corresponding transmission coefficient presented in Section

2.3.2 have been confirmed for frequencies up to approxi-

mately 15 times the classical coincidence frequency of the

plate. Furthermore, the additional longitudinal term

included in Section 2.3.3 has been confirmed for frequen-

cies up to approximately 8 times the coincidence frequency.

These results show that current theoretical treatments are

now able to predict accurately the shape of the lobes in
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the transmission and radiation curves produced by the

lowest three Lamb modes. Previously, only the angular

locations of these peaks were known from the dispersion

relations obtained by Rayleigh [11 and Lamb [31. This

research has also produced data which extends the confirmed

range of validity of those dispersion curves to frequencies

greater than 100 times the coincidence frequency. The

dispersion curves predict that the angular locations of the

two lobes produced by each An -S pair of Lamb modes willn n

approach the same asymptotic value at high frequencies.

This was found to be correct, as previous research has also

shown, but more significantly, it was discovered that as

each pair of lobes coalesce, they also cancel and the

transmission at that location goes to zero as the frequency

increased further.

6.3 Future Work

The most obvious point which needs to be improved is

the thin-plate model used to derive the longitudinal wave

term in Section 2.3.3. At frequencies above coincidence,

the plate cannot be accurately regarded as "thin" (i.e.,

with respect to a wavelength) and it is surprising that the

results are as accurate as they appear to be. A model

based on a "thick" plate should greatly extend the range of

validity.

The schlieren system, as it was configured, can be

improved in many ways. The errors in each resulting data

... . .... . ..... .. . . . . " ... .. . I "lli[... ... . 'l . ....... . . ... . .. '.. .....
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set are not random; the experimental data drifts back and

forth across the theoretical curves. However, as viewed

over many data sets, the errors do appear to be more

random. This implies that short term systematic errors are

occurring in the experimental system. The most obvious

source is the drift in the output level of the transducer,

which is caused by the slow drifting of the frequency and

output level of the oscillator. Another obvious point

which needs to be corrected is the stability of the optical

bench; the bench was moved from the first floor to the

fourth floor of the Applied Science Building for use by

this project. Not only is an upper floor more susceptible

to structural vibrations, but the granite table it was

originally situated on had to be left behind due to its

weight. The quantitative data scan across the video image

is confined to a single vertical slice. This greatly

limits the types of experimental geometries which can be

reasonably investigated. There are several commercial

video image digitizers available that are far more flexi-

ble. One obvious additional convience would be the

procurement of a small microcomputer in order to process

the large volume of digital data which can be produced with

the current system. The main benefits of such a system

would be the ability to base transmission and reflection

coefficients on the integral over the beam width rather

than on just a comparison of on-axis intensities. Unfortu-

nately, most of the power inherent in that approach would
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be lost with the current image digitizer since it is

frequently impossible to align the experiment in such a way

that the acoustic beam is perpendicular to the data

sampling line.
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